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N U M E R I C A L  M O D E L I N G  O F  M E C H A N I C A L ,  
R H E O L O G I C A L ,  A N D  S T R E N G T H  P R O P E R T I E S  
OF DISPERSE SYSTEMS 

G. P. Brovka and V. A. Sychevskii UDC 519.60 

The method of  structural elements is considered With its help, a modeling of  the stressed-strained state 
o f  easily deformable disperse systems is performed. On the basis of  computational experiments on 
triaxial compression, the conditions of  failure of  such materials are determined and the cracking in 
them is investigated. 

For solving problems of heat and mass transfer with structure transformation, we have devised a nu- 
merical method based on the analysis of structural elements. As was shown earlier [1-3], problems of heat and 
mass transfer in the case of cracking and failure of  material can be successfully solved with the use of discrete 
structural elements. The distinctive features of  this method lie in the fact that, in the case of  structural trans- 
formations, it enables one, along with energy and mass conservation, to allow adequately for the change in the 
characteristics of heat and mass transfer. This provides the possibility of solving problems on drying of easily 
deformable materials and their thermoelasticity. In this case, the form and structure of  the material are uniquely 
determined by the moisture-content and temperature fields. When this method is used for modeling of complex 
rheological processes, major attention should be focused on the mechanical motion of structural elements. 

In the present work, additional possibilities o f  the method are demonstrated and, on its basis, problems 
of numerical modeling of the mechanical, rheological, and strength properties of  natural disperse systems are 
considered. We describe below certain stages and algorithms of calculation of the processes of structure trans- 
formation and soil deformation. 

The basic assumption used in solving problems of mechanical motion is that the total force acting on 
a structural element tends to displace it to the position where the value of this force approaches zero. In the 
general case, the structural element is acted upon by forces from other elements, which are due to the defor- 
mation of linear links (structural forces), the change in the volume of the element (volume forces), and the 
difference between the velocities of  neighboring elements (viscous forces). In addition, inertial forces can arise 
due to the change in the velocity of  motion of the element. In investigating the deformation processes in soils 
and grounds, we can restrict our consideration to the first two forces. 

With the foregoing, the displacement of a structural element in each time step is determined by the 
equation 

) (1) 

Using formula (1), we calculate the displacement of  the element and its velocity by the formulas 

Ar = - ~ (2) a v '  
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Ar (3) 
AX 

Calculation of  the displacements and the velocities is performed element by element on each time layer 
and in two steps independently of the positions of  the elements, at first, in order of increasing numbers of the 
elements, and then in the reverse order. In the first case, for neighboring elements that have a number larger 
than the number of the considered element we take into account the displacements by a certain assumed value 
viA'c, where vi is the velocity of the corresponding element calculated on the previous time layer. In the sec- 
ond case, conversely, one treats in the same manner elements whose number is smaller than the number of  the 
considered element. This procedure makes it possible to transfer more adequately mechanical disturbances from 
one region of the material to another. 

We present the algorithm of calculation of the quantity OF/Or: 
I) calculation of  the force at the point ( xby0 ;  
2) determination of the point with coordinates (x2, Y2) at a distance Arl along the force direction; 
3) calculation of  the force acting on the element at the point (x2, Y2); 
4) if the force direction at the point (x2, Y2) differs from the force direction at the point (xb Yl), it is 

necessary to decrease Arl and return to i tem 2; 

5) calculation of  the modulus of  the difference of the forces at the points (xl, Yl) and (x2, Y2) and 
division by Ar 1. 

Knowing the force at the point (Xl, Yl) and the derivative OF~Or, we calculate the displacement As" by 
formula (2). It is plotted along the force direction, which makes it possible to find new coordinates of  the 
element (x3, Y3). The new velocity is calculated by formula (3). 

We considered the force that acts on the elements and represents the total resultant force from the 
action of a number of  forces. Their nature and number depend on the environmental conditions and the rheol- 
ogy of the system. It is known that the rheological properties of the system can be described by the combina- 
tion of three fundamental properties: elasticity, viscosity, and plasticity. Their possible realization in structural 
elements is presented in [ 1-3]. We dwell only on the plastic properties. They can be modeled through both the 
plastic properties of linear links and the plasticity of the structural-element volume. We consider plastic defor- 
mations of the links. In modeling a plastic flow through linear links we proceed from the assumption that the 
mean hydrostatic pressure on the element and its mass must remain unchanged. If the density of the body is 
constant, the mass constancy can be replaced by the constancy of the initial volume of the system. For simplic- 
ity, we will consider the procedure of realization of plastic deformations for the two-dimensional case. In the 
process of heat and mass transfer, certain stresses occur on the links of  the element. In this case we can cal- 
culate the average stress on the element by the formula 

l N Z Al2 
l i  " 

i=1 

(4) 

In this case, plasticity manifests itself as follows: the initial length of  the links on which the stress is larger 
than the average stress decreases, and the initial length of the links on which the stress is smaller than the 
average stress increases. I f  the stresses on the links are equal in value and sign, the initial lengths of  the links 
remain unchanged. This situation is realized in the case of triaxial compression or expansion. We write the 
general algorithm of realization of plastic deformations on the links: 

1) calculation of the average stress on the element; 
2) calculation of the change in the initial lengths of the links of  the element relative to the average 

stress: A/0/= koef(Pli+Ali); 
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Fig. 1. Modeling of the replacement of links. 

3) determination of the change in the initial lengths of the links that are due to the conservation of the 

Z Aloj loj 
initial area of  the element; in this case the formula ~/0bi = j ., loi is used; xlj 

J 
4) calculation of the final change in the initial lengths of  the links Al0f = A/0f + ~/0bi; 
5) calculation of the new values of the initial lengths of  the links. 
In this case, averaging of  the stressed state on the links takes place, tangent stresses approach zero, and 

irreversible plastic deformations arise in the material. 
Now we dwell on the plastic deformations related to a change in the volume. In this case, besides the 

element in itself, it is necessary to consider its neighbors. Using the values of the hydrostatic pressures on the 
element and on its neighbors, we calculate the mean hydrostatic pressure. Then we use it to find the new value 
of  the initial volume of the element. In this case we will assume that the sum of the initial volumes of  the 
elements and of its neighbors remains unchanged prior to plastic transformations and after them. Therefore the 
change in the initial volume of  the element should be compensated for by the change in the initial volumes of  
its neighbors so that their total volume remains unchanged. We present the general algorithm of the above 
discussion: 

k=l 
1 ) calculation of the mean hydrostatic pressure on the element by the formula Phi = 2--~--+ Pi 

Phi + Ev 
2) determination of the new value of the initial volume of the element Yon i = gg Ev ; 

3) calculation of the difference between the previous and new values of the initial volume AVoi = 
Vob i -- V0ni, 

4) to extend this difference to the neighboring elements, it is necessary to calculate the increase in the 

initial volumes of the neighboring elements AVk = AVoi(Pk- Pi)/~ (Pk-  Pi); 
k 

5) determination of  the new values of  the initial volumes of the neighboring elements V0nk = 
V0b~ + AVk, where V06k is the previous initial volume of the neighboring element. 

When this procedure is performed, the elements exchange initial volumes, relaxation of  the hydrostatic 
pressure takes place, and, as a consequence, plastic deformations occur. 

Plastic deformations also arise as a result of the replacement of links between the elements. This pro- 
cedure is intended to provide the possibility of motion of the elements for long distances relative to each other. 
The element can be displaced f rom one end of the body to another, and its neighbors can be completely re- 
placed. Such a free displacement of  some elements relative to others, besides plastic deformations, makes it 
possible to model a viscous flow and the fluidity of the material. 

We consider the procedure of  replacement of links. It is based on the application of  the notion of  
weight. Let us assume that we have four elements n, m, l, and k. In this case, the variants of  links between the 
elements shown in Fig. 1 are possible. Let us assume, for definiteness, that prior to the procedure of replace- 
ment of  links, variant I was realized. Let the weight of state I be g I and the weight of state II be g2. If weight 
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gl is larger than weight g2, state I is realized. If  weight g2 is larger than weight gl ,  state II is realized. If the 
weights are equal, the initial variant I remains. In this case, the weight is determined by a large number of 
conditions. Thus, it depends on: 

l) the value of the stress on the links; if it exceeds the admissible value, a link is broken or is re- 
placed; a concrete realization depends on the specific character of  the problem; 

2) the length of the links; preference is given to a shorter link; 
3) the number of links in the element; 
4) the quality of the links; the body can represent a composite material consisting of solid particles 

possessing the properties of air, water, and other inclusions; it is apparent that in this case the properties of the 
elements and, respectively, of  the links are different; 

5) the value of the random quantity; this is necessary to impart stochastic properties to the system; 
6) the value of the angle between the links. 
This list can be supplemented depending on the specific properties of the problem solved. Giving the 

necessary weights to different conditions, we manage to control the possibility of replacing the links in the 
necessary direction. Consequently, we can also exercise control over a number of rheological properties of the 
system. 

When a link is broken, heat-and-mass-exchange and mechanical interactions between elements disap- 
pear at the site o f  the break. However,  the cracks actually formed are filled with a different substance. In 
particular, it can be air or water. Therefore, to allow more correctly for the heat and mass exchange of the 
system with the environment, where the cracks arose it is necessary to create elements with new heat-and- 
mass-exchange and rheological properties that correspond to the environment. At first, at the site of  the broken 
link a new link with properties of  the substance filling the crack is formed. As the crack increases further, at 
the instant its dimensions satisfy the condition of formation of an element, a quadrangular element with prop- 
erties of the environment is already formed. As the crack increases, new elements can be formed on each link 
of the element. In this way the crack is gradually filled with new elements. This allows the disperse-medium 
elements to retain the capacity for heat and mass exchange in the case of cracking. A different situation is also 
possible. At the final stage of the process of heat and mass transfer the transfer gradients in the body decrease; 
as a consequence, the extending stresses decrease, which can lead to a decrease in the dimensions of  the cracks 
and even to their complete collapse. Therefore, the possibility of removal of environmental elements has been 
realized. In this case, the size of  the element is examined; if it is less than a certain value, the element is 
transformed to a quadrangle through the replacement of  the links with other elements. Thereafter we can re- 
move it, leaving only one link. In this way all the elements can be removed until the complete collapse of  the 

cracks. 
We write the general algorithm of formation of elements: 
1) formation of a new link with properties of the environment; 
2) formation of a quadrangular element with new properties when the condition of breaking of the new 

link is satisfied; 
3) as the crack increases, items 1 and 2 are repeated as many times as necessary. 

The algorithm of removal of  elements: 
1) calculation of the size of  the element; 
2) if it is less than a certain value prescribed by the data given, the number of links in the element is 

determined; 
3) if this number is larger than four, it is increased to the necessary value with the procedure of re- 

placement of  links; 
4) removal of the element; 
5) if the crack decreases further, this procedure is repeated as many times as necessary. 
tt should be noted that the most complete and sequential description of the method of structural ele- 

ments and the main results obtained on its basis are presented in [4]. 

969 



Using the above-described method, we consider the mechanical behavior and the rheological properties 
of  structured easily deformable rocks. Actual bodies are three-dimensional. One-dimensional or two-dimen- 
sional models can be inadequate to describe them. This primarily concerns the description of the mechanical 
motion of materials, which forces us to model three dimensions. In investigating the complex stressed state, 
cylindrically shaped samples are most often used, because of the fact that external stresses on them are simpler 
to prescribe. The cylindrical figure can be represented as the figure of  rotation with the use of  a two-dimen- 
sional rectangle. Since the cylindrical coordinate system is used, it is necessary to somewhat change the ap- 
plied formulas. This problem differs from the plane problem by the existence of a force that is caused by the 
deformation of the circle of rotation. This force is directed along the radius to the center of the cylinder. The 
formulas were derived with regard for the features of  the cylindrical coordinate system. The expression for the 
force that is caused by the deformation of the linear link between the i-th and k-th elements takes on the form 

F i k = - ~ E ( l i ~ - l o i ~ )  t a n ~ i  + tan ( R i + R k ) ,  

where loik is the initial length of the link between the i-th and k-th elements. 
Besides this force, the force that is related to the deformation of the circle of rotation acts in the con- 

sidered plane: 

R i - Roi  
Fi= 2, E Se, . 

The force that is due to the difference between the hydrostatic pressures on the elements is calculated 
by the formula 

Fik = "~. (Pvi - Pvk) tan + tan (R  i + R k) lik . 

The force acting from the environment at the boundary has the form 

7C 
Fik = "~ (Pvi - Pvext) (3Ri  + Rk) lik " 

The hydrostatic pressure Pvi  is calculated as 

Pvi  = Ev  - -  
V o i -  V i 

v, 
(5) 

The expression for the average stress on the links has the form 

1 R i - Roi  (6) 
Pa = -3 2 E  + E Ro i . 

Relaxation of  the stresses on the links between the i-th and k-th elements is performed by the following 
formulas, written in order of their application: 

| lOik 1 Roi  
Alo i  k = a N (lik - lOik) ' z ~ O i  = a l [  R i - ' 
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zxe0i 
A l o i  k = - 0.25m Ro--- 7 lo i  k . 

When these relaxation formulas are used, the situation where the initial length of  the link loik ap- 
proaches zero may occur. In view of the physical fact that actual disperse particles can change their sizes only 

in a certain range, the change in loik must be limited. Let /0max and lomin be respectively the maximum and 
minimum values of the initial length of the link loi~. In this case, the range of variation of the relative value of 

the initial length of the link can be represented as eo = (lon~ax- lonfm)/POa, where P0a is the mean value of the 
initial length. Changing e0, we can control the pJastic properties of the modeled material. In this case, it is well 
to bear in mind that E0 = 0 does not mean that the relaxation of the stresses on the elements is absent. In this 

case, P0a = lOmax = 10min and all the links tend to P0a as much as possible. 
Developing the method of modeling of the processes of deformation and transformation of  the structure 

of  three-dimensional axially symmetric bodies makes it possible to simulate standard mechanical testing of 
samples, which allows one to prescribe adequately the parameters of  models that correspond to concrete 
grounds and rocks. We consider the sample in the form of a cylinder. The sizes of the sample are chosen in 
much the same manner as in laboratory experiments: the height of the sample H = 1.5D, where D is its diame- 
ter. In view of  the fact that the symmetry is cylindrical, we consider half of the cross section of  the sample 
along the vertical axis. In line with this, the area of the considered cross section is broken into NG × NV, 
where NG = 20 and NV = 60. To carry out a computational experiment, we have performed two types of 
compression: triaxial compression and compression with the possibility of  side expansion. In this case, the ratio 
between the volume and linear moduli of elasticity E = Ev/E, the magnitude of ~ ,  and the external pressure 
applied to the lateral surface Placext are varied. In the calculations, the value of the linear modulus of  elasticity 
was taken to be E = 1000 kPa. 

For testing the problems and determining the physicomechanical characteristics of  the models of  
grounds, we compared the parameters of  the investigated medium as a continuous body with the parameters of  
structural elements into which this body is broken. Triaxial compression makes it possible to determine the 
rheological properties of the sample from the rheological parameters of  the structural elements. To do this, the 
sample was compressed without the possibility of  side expansion with a relative deformation of ~ = 0.1. Then 
we determined the pressures Pe and Plat on the end and lateral surfaces, respectively. Thereafter we calculated 
the compression modulus of elasticity Eco m, the standard modulus of elasticity E~, and the Poisson coefficient 
v o f  the e n t i r e  body by the fo l lowing fo rmulas :  Ecom = Pe~, ~ = Ptat/P~; v = ~ / (1  +~) ;  Es = 
Ecom(l + v)( l  - 2 v ) / ( l  - v ) .  The corresponding values of these quantities as functions of  E and e 0 are presented 
in Table 1. It is seen from the table that, varying the parameters ~ and Co, we can model the rheological prop- 
erties of the body in a wide range that corresponds to the range of variation of the properties of  actual easily 
deformable natural disperse systems. Thus, with increase in Z, which corresponds to an increase in the modulus 
Ev at a constant E, the elastic constants Eco m, Es, and v increase. In this case, the contribution of  the forces 
caused by a change in the volume increases. Selecting the parameters Ev and E, we can obtain the necessary 
values of  Ecom, E~, and v. Finally, we manage to model the elastic behavior of the entire sample. The model 
of an elastic-plastic body has also been realized. The existence of the relaxation procedure gives an additional 
redistribution of  stresses on the links. With it, it is also possible to model deformations that are not restored 
after the removal  of the load, which enables us to speak of plastic deformations. The loads are redistributed so 
that the stresses on the links become equal in different directions. The transfer of a portion of the stress in the 
other direction can be characterized by the quantity co. It i s seen  from the table that Ev and E decrease with 
increase in Co, which is due to the relaxation of  the load Pe at the ends. Simultaneously with this, the Poisson 
coefficient characterizing the transfer of the load in the perpendicular direction increases. Thus, by selecting the 
parameters Ev, E, and e0, we can model the necessary properties of the entire sample in both the elastic and 

elastic-plastic regions. 
We consider the triaxial compression of  a sample with the possibility of side expansion. For elastic- 

plastic samples we estimated the rate of stress relaxation. Analysis of  the relaxation made it possible to select 
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TABLE 1. Dependence of the Compression Modulus of  Elasticity Eco m (kPa), Modulus of  Elasticity Es (kPa), and 
Poisson Coefficient v on eo and )~. 

l er'0 = 0"2 ] v'0 = 0"1 I v'0 = 0"05 ] v-'0=0 ] 

Ecom 
0.03 
0.1 
0.3 
0.5 

419 
491 
697 
898 

517 
589 
794 
997 

0.03 
0.1 
0.3 
0.5 

74 
80 
88 
88 

187 
193 
204 
211 

0.03 
0.1 
0.3 
0.5 

0.468 
0.471 
0.478 
0.483 

0.427 
0.436 
0.451 
0.461 

572 
645 
849 
1051 

277 
285 
297 
301 

0.395 
0.407 
0.430 
0.445 

Es 

626 
699 
904 
1107 

366 
375 
391 
401 

0.363 
0.379 
0.409 
0.427 

Without relaxation 

764 
842 
1053 
1259 

703 
734 
785 
814 

0.181 
0.223 
0.298 
0.341 

the time step and the rate of compression of the samples which allows plastic deformations to be realized and 

leaves the result obtained unaffected. 
The stressed state at a concrete point of a sample consisting of discrete structural elements can be char- 

acterized by the average stress on the links of the element Pa, the stress related to the deformation of the circle 

of rotation Pr, and the hydrostatic pressure Pv. Knowing the deformation of individual links and the modulus 
of elasticity of the links, we can calculate the stress-tensor components that correspond to the characteristics of 

the stressed state of a continuous medium by the formulas 

Z (Ale/lk) c°s2 ~ 

k (7) 
2 

E cos (~k 

k 

Pyy = - E 

~_~ (AlJlk) sin2 ~k 
(8) 

k 

e~y 

(Al#/lk) COS ak sin O~ k 

= _ E  k 
sin2 ~k 

k 

(9) 

The component Px, acts in the surface element perpendicular to the X axis on the direction of this axis. 

The component Pyy acts on the surface element parallel to the X axis in the direction of the Y axis. p ~  is 

applied to the same surface element to which Pry is applied, but it is directed along the X axis. We can also 
obtain the values of the stress components acting on other surface elements inclined to the X axis at any angle 

~. To do this, in place of the angle c~, it is necessary to take the angle ~ + ~. In this case, Pvy is directed 

perpendicularly to the surface element inclined at an angle ~t to the X-axis. The component P~, acts on the 
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Fig. 2. Radial distribution of  stresses in a cylindrical sample in testing (a) 
and triaxial compression of  elastic (b) and elastic-plastic (c) samples. P, 
kPa; R, dimensionless radius. 

element positioned perpendicularly to the considered one along the direction determined by the angle ~. Cor- 
respondingly, the component p~, is a tangent component acting on the given surface element. 

It should be noted that the characteristics calculated by formulas (7)-(9) are static in character. There- 
fore, to describe a local stressed state, it is desirable to average these characteristics over a group of structural 
elements, for example, over the considered element and over its neighbors. 

Let us analyze the test problem on the distribution of stresses in a sample. To do this, we compress it 
in the direction of the Y axis and extend along the X axis. In this case, the deformation must be of  such a 
magnitude that the volume of the system remains unchanged. Figure 2a shows radial distributions of  the 
stresses described above. The calculations have shown that P~v has a maximum value on the surface elements 
positioned at angles ~ /4 ,  3rt/4, - n / 4 ,  and -3~x/4 to the X axis. We denote the component P,y acting at an 
angle - n / 4  as T. Then, it is seen from Fig. 2a that the components P c ,  Pyy, and T are related by the equation 

T = (Pyy - P~.,)/2. (10) 

This conforms with the general theory of the state of plane stress. It is seen from Fig. 2a that the hydrostatic 
pressure is absent. Practically throughout the body, except for the center, the average stress on the links Pa 
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Fig. 3. Dependence of the breaking load on the side pressure: for elastic 
samples, curves 1-3 [I) X = 0.03; 2) 0.3; 3) 0.5); for elastic-plastic sam- 
ples, curves 4-6 [4) X = 0.03; 5) 0.3; 6) 0.5]; for samples with different 

strength properties of the links, curves 7 and 8. Pb, Plat.ext, kPa- 

approximates zero. Only at the axis of the cylinder does Pa have a certain negative value, because of the de- 
pendence of the mean pressure on the deformation of the circle of rotation by formula (6). The stresses Plink 
and Pr behave analogously, and Pr is related to the change in the radius R i of the element. The distribution of 
Pr is determined by the loads applied to both the end and lateral surfaces. The links arranged parallel to the X 
axis are in the extended state, which corresponds to the shape of the curve for PUnk- The increase in Plink 
occurring when going to the axis is due to the pressures applied to the end surfaces. 

We perform a computational experiment for two bodies - an elastic and an elastic-plastic body with 
eo = 0.2. We vary both Z and the external pressure Plat.ex! applied to the lateral surface of the body. Figure 2b 
and c shows the distributions of  stresses in the elastic and elastic-plastic samples in the case of triaxial com- 
pression at Plat.ext -- 0. For the elastic sample, the component Pry takes on the maximum value. Taking into 
account fluctuations that are due to the stochastic character of the properties of the elements, it may be as- 
sumed that the values of P ~  are constant. Near a certain mean value, all the considered stresses experience 
fluctuations. The component p~r is much smaller than Pyy, which indicates a poor transfer of  stresses at small 
values of  X. With increase in Z, P ~  also increases. Since the external pressure is absent on the lateral surface, 
Plat.ext -- 0, Pxr decreases with increase in the radius. On the average, relation (10) is fulfilled for T. The mean 
pressure on the links and the hydrostatic pressure are identical in behavior. They decrease slowly toward the 
side boundary in much the same manner as the component P ~  decreases. The stress Pr takes on a negative 
value and increases in modulus as the lateral surface is approached. A similar behavior is shown for Punk- This 
distribution of Pr is due to the increase in the radius of the elements, with the result that the body takes the 
shape of  a barrel. The shape of  the curve of Punk is explained by the features of the distribution of stresses on 
the links. The forces acting on the links that are arranged parallel to the X axis tend to extend them. At the 
same time, the lines arranged along the Y axis are compressed. The distribution obtained for the elastic-plastic 
body  is different in character and is determined by the relaxation of the stresses. As expected, this leads to the 
equalization of the stresses in different directions, as can be seen from Fig. 2c. The component T, on the av- 
erage, is zero in accordance with (10). Comparison of these plots shows that the systems with relaxation and 
the systems without relaxation are different in mechanical behavior. 

From the results of triaxial experiments we can also determine the conditions of failure of  the sample. 
At first, the sample was compressed by the confining pressure till the state of equilibrium was established. 
Then the load that causes a deformation proceeding with a constant rate to failure was applied to its ends. In 
this case, we noted the maximum pressure on the end surfaces of  the sample. In Fig. 3, the results of  the 
computational experiment for the elastic and elastic-plastic bodies at different values of the parameter Z, where 
Pb is the breaking load, are respectively presented. Figure 3 also shows the curves of failure of the sample at 
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Fig. 4. Typical patterns of failure of elastic (a) and elastic-plastic (b) sam- 
pies in triaxial compression. 

different strength properties of the links. Curve 7 shows the linear dependence of the link strength on the pres- 
sure Pa on the element; curve 8 corresponds to the case of  a constant strength of the link. Based on the failure 
curves, we can calculate the strength characteristics: internal-friction angle tp and bond co. It is significant that, 
for curve 7, the internal-friction angle is tp = 27.8 ° and the bond is co -- 14 kPa, and for curve 8, q~ = 20.8 ° 
and co -- 15.5 kPa. These indices of strength correspond to peat systems [5]. Changing the parameters of  the 
structural elements, one can select the strength indices that correspond to concrete dispersed materials. 

In accordance with the physical, physicomechanical, and physicochemical properties of natural disperse 
systems, the results obtained can be interpreted as follows. The structural links reflect the mechanical proper- 
ties of fibers that thread the entire body and interweave, forming the skeleton, and also contacts between the 
particles of the coarse fraction of the material. The volume modulus of elasticity Ev describes the properties of 
the moist nonstructured fine fraction that fills the spaces formed by the skeleton and larger particles. It is seen 
from Fig. 3 that the smaller the contribution of this fraction, the stronger the body. Comparison of  curves 1-3 
and 4-6 shows that the strength of the system with no relaxation is higher than the strength of the system with 
the possibility of  relaxation. This can be explained by the higher mobility of the skeleton due to coagulation 
links and by the smaller contribution of the fibers to the breakage of the entire system. 

The computational experiments have shown that elastic and elastic-plastic materials behave differently 
in cracking. Typical patterns of failure of elastic and elastic-plastic bodies are presented in Fig. 4a and b, re- 
spectively. In the elastic bodies, the process of cracking to the point of failure takes a shorter time interval. At 
the initial period, links break at one site, forming a crack that propagates in a certain direction. In this case, 
the pressure at the ends of  the sample reaches the maximum at the initial stage of failure and then monotoni- 
cally decreases to the complete failure of the sample. 

The process of  failure of the elastic-plastic samples takes a longer time interval. At the initial period, 
cracks are formed in a random manner throughout the sample. The pressure at the sample ends declines at the 
instant the links break. However, it increases again after a certain time interval to the next breaking of  the 
links. Consequently, the pressure fluctuates with time about a certain mean value. In this case, three variants 
can be realized: the mean pressure increases, decreases, or remains constant. This situation exists up to a cer- 
tain instant after which the pressure ceases to fluctuate and decreases monotonically, whereupon the sample 

fails. 
The method of  structural elements allowed us to describe the change in the shape of the sample and 

the transformation of its structure caused by the cracking and repacking of the elements in the volume, to 
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estimate the stressed-strained state of the system, and to relate the rheological characteristics of the structural 
elements to the theological properties of the entire body. 

Thus, this method makes it possible to calculate all the basic parameters of the strain stressed state at 
each point of the material and to allow for the influence of mechanical stresses on the moisture distribution. 
This offers a means of solving such problems as filtration consolidation of grounds and dehydration of rocks 
with the help of mechanical loads and the problems of stability of slopes and modeling of landslips. Assigning 
the properties of different components of a multicomponent system to the structural elements, one can calculate 
the physicomechanical properties of this system with the help of  the method proposed. 

N O T A T I O N  

F, force acting on the element, N; r, radius vector of the element position, m; z, umt vector of the 
force direction; Ar, displacement of the element, m; v, velocity of  the element, m/sec; AI i, nonadmissible 
shrinkage, m; l i, length of the link between the elements, m; loi, initial length of the link between the elements, 
m; koef, coefficient less than unity; N, number of links in the element; Voi, initial volume of the element, m3; 
V i, volume of the element, m3; E, modulus of  linear deformation of  the link, Pa; Ev, volume modulus of elas- 
ticity of the element, Pa; m, number of links participating in relaxation; Pi, pressure on the i-th element, Pa; 
Pk, pressure on the neighboring k-th element, Pa; lik, length of  the link between the i-th and k-th elements, m; 
R i and Rk, radii of the corresponding i-th and k-th elements, m; Roi, radius of the element in the case of com- 
plete absence of moisture in the body, m; Sel, area of the element, m2; A/oi k and ARo i, increments in the initial 
length of the link and the initial radius of the element, respectively,, m; ~0, range of  variation of the relative 
value of the initial length of the link; ot~, angle between the link and the X axis, rad; ~,  angle of  slope of the 
surface element to the X axis, rad; a, al, coefficients less than unity; NG, number of elements along the hori- 
zontal; NV, number of elements along the vertical; Pe and Plat, pressures on the end and lateral surfaces of the 
sample, respectively, Pa; E~,,m, compression modulus of elasticity, Pa; E~, standard modulus, Pa; v, Poisson 
coefficient; Pa, average stress on the links of  the element, Pa; Pr, stress caused by the deformation of the circle 
of rotation, Pa; Pv, hydrostatic volume pressure, Pa; Punk, stress on the link, Pa; P~x, P.w, and Pry, calculated 
components of the stress tensor, Pa; Plat.ext, lateral external pressure, Pa; Pb, breaking load, Pa; tp, angle of 
internal friction; Co, bond, Pa. Subscripts: el, element; e, end; lat, lateral; corn," compression; ext, external; i, j, 
and k, numbers of elements; x, spatial coordinate along the X axis; y, spatial coordinate along the Y axis; s, 
standard; b, breaking; a, average; r, rotation; v, volume; link, link, f, final; b, previous; n, new. 
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